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ABSTRACT

In this paper the results of Dwyer and Zabrodsky [DZ] are extended by
showing that if L is a compact Lie group and G is either a p-group or a
torus, then every map f : BG — BL is homotopic to one induced by a
homomorphism ¢ : G — L, and two such induced maps are homotopic
if and only if the corresponding homomophisms are conjugate. Several
other results related to maps between classifying spaces, completions, and
fibrations are also deduced.

Introduction
In this paper we extend some of the results of [DZ], using a different approach.

Our main theorem is the following:

THEOREM A: Let L be a compact Lie group and let G be either a p-group or a
torus. Then:

(a) Every map f : BG — BL is homotopic to a map By : BG — BL where
y : G — L is a homomorphism.

(b) Let ¢q,¢1 : G = L be homomorphisms. Then Bypy ~ B if and only if pq
and ¢, are conjugate — that is, if and only if there exists an inner automorphism
ag : L — L such that ¢; = a4 0 .

We shall use the following notations:

map (X, Y) - the space of (unpointed) maps from X to Y,
map.(X,Y) - the space of pointed maps from X to Y,

map (X,Y)s - the path component of f : X —» Y in map (X,Y),

* Deceased. This paper was prepared by John R. Harper from manuscripts left by
Alex Zabrodsky. The editor is grateful to David Blanc for his help in preparing
the paper for publication.
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map.(X,Y )y - the path component of f : (X, *) — (Y, *) in map.(X,Y),
C(X,Y) = map(X,Y)o - the component of the constant map in map(X,Y),
C(X,Y) = map.(X,Y)o — the component of the constant map in map.(X,Y’),
X,' — the Bousfield-Kan completion of X with respect to the finite field Fyp,

X~ =T], X}, and similarly Z* =[], Z;, where Z; = the p-adic integers,

Xg — the rationalization of X.

We use the standard notations associated with a group G and G-spaces X, Y~

EG — a free contractible G-space,
BG = EG/G — the classifying space of G,
XS — the fixed point set of X,
mapg(X,Y) — the space of G-maps from X to Y,
X"*C = mapg(EG, X) — the homotopy fixed point set of X.

If L is a compact Lie group and ¢ : G — L is a homomorphism of groups, we
have the following notations:

Z1p — the centralizer of ¢G in L,
Ny — the normalizer of ¢G in L,
Wre = Nro/Zpe,
T, — a maximal torus in L,
NT; — the normalizer of T, (in L),
Wi = NT. /T — the Weyl group.

In the proof of Theorem A and its extensions we use the following theorems of

Lannes, Miller, Carlsson, and Dwyer-Zabrodsky:

THEOREM 1 (Lannes [L, Thm. 7.1.1]): Let X be a 1-connected space such that
each H'(X,F,) is finite, and let V be an elementary abelian p-group. Then the
natural map

[BV, X] — Homa(H*(X,F,), H*(BV,F,))

is bijective. (Here A denotes the category of unstable algebras over the mod-p
Steenrod algebra.)
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THEOREM 2 (Carlsson, Lannes, Miller; see, e.g., [M]): Let G be a finite p-group
acting simplicially on a finite simplicial complex X. Then the map (X G);‘ —
(X;‘)"G, induced by X€ — X*G | is a homotopy equivalence.

THEOREM 3 (cf. [DZ], Thm 1.1): Let G be a finite p-group, L a compact Lie
group, ¢ : G — L any homomorphism, and consider the homomorphism m :
Z1pxG — L induced by ¢, and the corresponding map Bm : BZpoxBG — BL.
Then the adjoint map Bmy : BZy¢ — map(BG,BL)p, induces a homotopy
equivalence (Bmy); : (BZLy), — map(BG,(BL);)p(4) -

As a consequence of Theorem A and Theorem 3 one obtains:

THEOREM B: Let ¢ : T — L be a homomorphism from a torus T = T" to a
compact connected Lie group L. Then

(a) map,(BT, BL)g, fibers principally over (L/Z1 )" with a connected fiber ho-
motopy equivalent to a finite product of Eilenberg—MacLane spaces whose homo-
topy groups are finitely generated Z" /Z modules occurring in odd degrees. Con-
sequently, the sufficiently high dimensional homotopy groups of map.(BT, BL)g,
are finite.

(b) The homotopy groups of the fiber of map(BT, BZ1p)p,, — map(BT, BL)p,
are rational vector spaces.

THEOREM C: Let 0 = T -5 G -5 Wg — 1 be a finite extension of a torus
T =T", let L be a compact connected Lie group, and let f : BG — BL satisfy
fIBT ~ By for some homomorphism ¢ : T — L. Then:

(a) There exists a homotopy commutative diagram

BT—22 B0
Bal lBo’
BG , BNpyp
Br lB‘r’
BW¢ BWie

where a : Wg — Wy is a homomorphism, pg : T — Z1 is induced by ¢, and
f' covers f up to homotopy.

(b) If ZLy is a torus then f' ~ By' for some homomorphism ¢' : G — Np.
In particular, if L is simple, any map f : BL — BL induces an endomorphism
w1 : NTp — NTy such that By, is compatible with f.
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In the process of proving the main theorems, we prove some additional lemmas
and propositions that may be interesting in their own right. For instance, the
following theorem of Borel (see [B]) follows easily from Theorem 2:

COROLLARY 1.5: Let G be a finite p-group of automorphisms of a compact
connected Lie group L. Let F C L be the subgroup of elements fixed by G and
Fy C F the identity component. Then F/F, is a p-group. In particular, if G is
a p-subgroup of L, then Z1G/(Z1G)e is a p-group.

In the process of proving Theorem A, we prove the following;

PROPOSITION 1.3(a): Let G and K be as in Theorem 2. If m{ K is finite, then
7o K€ — moK*C is bijective.

PROPOSITION 4.1: Let i : Ly C L be a cocompact pair of topological groups,
with m1(L/Lo) finite, and let G be a p-group.

(a) If f : BG — BLy satisfies Bi o f ~ By for some homomorphism ¢ : G — L,
then f ~ Byg, where po : G — Lg is a homomorphism and ¢ and i o o are
conjugates.

(b) Let @o,91 : G — Lg be homomorphisms. If Bpy ~ By, and i o ¢g, and
top; : G — L are conjugates, then g and ¢, are, too.

ORGANIZATION OF PAPER. Corollary 1.5 and Proposition 1.3 are proved in
Section 1. Theorem 3 is proved in Section 3, using material from Section 1.
Theorem A is proved in two parts: the case where G is a p-group is proved in
Section 4, as is Proposition 4.1 (from which Theorem A(b) follows in this case).
The case where G is a torus is proved in Section 6, using results from Section
2. [BG,BL], for G a finite nilpotent group, is analyzed in Section 5; Section
7 contains the proof of Theorem B and Theorem C; and Section 8 contains a
postscript by the editor.

Editor’s note: It should be pointed out that a version of Theorem A was ob-
tained independently by Dietrich Notbohm in his thesis (cf. [N]). |

1. Homotopy Fixed Points and Completions

In this section we study some simple conclusions of Theorem 2 relating the fixed
points and homotopy fixed points of an (uncompleted) finite G-simplicial complex
X. First notice the following:
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LEMMA 1.1: Let X be a G-CW complex. Then

(a)

(b)

()

(d)

(e)

Every h € X*G, together with the inclusion X*¢ C map(EG,X) ~ X, in-
duces an action of G on mp(map(EG, X), h) = n,(X) and a homomorphism
Uy : 1 (XPCR) — ma(X)E .

For n > 1, every action of a group G on K(A,n), where K(A,n)*C # 0, is
equivalent to an action of G on the abelian (topological) group K(A,n) by
automorphisms. Hence K(A,n)*C is again an abelian group and

Tm(K(4,n)*°) = H""™(G,A) for0<m<n.

Forn = 1 one again has to assume K(A,1)*C # 0 and then mo K(A, 1)*C =
HYG, A), as sets, and m;(K(A,1)*C h) & AC (where the action of G on
A is determined by h).

If
X ! Y
T
Xo fo Yo
is a homotopy pullback diagram of G-spaces and G-maps, then so is
th
Xhe Y
U?G ng
X()’IG f 5'0 Yth

For Xy = EG one concludes: every h € YO”G induces a G structure on
a suitable representative X of the homotopy fiber of vy, and X*C is the
homotopy fiber (over h) of vtC. The G structure on X described above is
characterized by the fact that f : X — Y is a G-map, and v o f factors
through EG.

Let X be a nilpotent G-space and let h € X*¢. If the G-module (G-
group, for n = 1) 7, X corresponding to h satisfies H™(G,7,X) = 0 for
n > m > 1, then U, of (a) is an isomorphism.

Suppose f : X — Y is a G-equivariant map, and the homotopy fiber V of f
is connected and has uniquely p-divisible homotopy groups. Suppose futher
that H*(G, 7 V) =0 fori = 0,1 and k > 1. Then myX*G = nyY*G  and
the homotopy groups of the fiber are uniquely p-divisible.

As a consequence of 1.1 one has:
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PROPOSITION 1.2: (a} Let X be a simply connected G-simplical complex. Then
mo(X*F) — wo((X2)*C) is bijective and the homotopy fibers of X*¢ — (X})h¢
are connected and their homotopy groups are abelian and uniquely p-divisible.
(b) K X is nilpotent, then the set of path components of the homotopy fibers
of X*G — (X')*C is isomorphic to the set (11 X;)% /(1 X)% = (m X, /mX)C,
where rlX: = (mX), = m(X,) is the p-completion of the nilpotent group
mX. The fundamental groups of these homotopy fibers are extensions of a finite
group of order prime to p by an abelian uniquely p-divisible group.

Proof: (a) ¥V — X — X is a fibration, then any G-map EG — X' has
a unique lifting. To see this, note that the homotopy groups of the fiber V are
(uniquely) p-divisible. Hence the lifting problem

’EGXGX

BG - EG xg X}

has a unique solution, as the obstructions for existence lie in H**(G,m;V),
k > 2 and the obstructions for uniqueness lie in H*(G, V), k > 2 - and all
groups vanish by 1.1(b).

For the second assertion of 1.2(a), for any group H let (# p)H denote the
torsion subgroup of H modulo its p-torsion subgroup. Then one has exact se-
quences 0 — (mn41X/torsion) ® Z3 /Z — maV — (# p)mnX — 0 and for every
h € (X))*¢ the homotopy fiber over h in X*C is V*G by 1.1(c); now apply
1.1(e).

(b) One has a diagram

X
|
XA

P

[ e—=<N
e D e Dy

|

W —’K(nX, 1)—'K(‘I’1X:, l)

where Vi = K((# p)m(X),1) x m X, /m X.
X/ is the universal covering space of X, For h € (X')* one obtains h; €
K(mX},1)*¢ and one can see that mK(m X, 1)*¢ = moK(m X;,1)*%, hence
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one has hg € K(mX,1)C covering hi. One has a fibration VG _, VhG _, YhG,
where V*G and V}*€ are fibers over h and h respectively, and X is given a G-
structure induced by hq. (b) now follows from (a). |

PROPOSITION 1.3: Let G be a p-group and X a finite G-simplical complex.
(a) Suppose either X is nilpotent or m X is finite: then mX ¢ = mXH6,
(b) If X%, X are nilpotent and m X, m(X,20) are abelian for all 7y € XG,
then all the homotopy groups of the fiber of X — X*C are abelian and
uniquely p-divisible.
Proof: (a) By Theorem 2, mp X% —» mo(X2)C = 7o(X2)*¢, hence XY —
7o X"G is 1-1. For X 1-connected, mpX*C — WO(X;‘)"G is a bijection by 1.2(a);
thus 7o X @ 22 my X*C. Otherwise, consider the universal covering space X: then
h € X"C induces a G-structure on X and an element % € X*G, Hence, by the
argument above, h ~g éand é€ X6, Hence h ~¢ cand c € XC.
(b) The fibers V1, V; of X¢ — (X)) and X"G — (XM*C respectively have
the desired property, and the desired fiber is the same as that of V; — V5. |

PROPOSITION 1.4: If X is a finite nilpotent G simplicial complex, then
Hy(X%) - (H1 X)°

has a finite cokernel.

Proof: By 1.3 one has a surjection mpX*¢ — mo(X2)*C. This implies that
T (XP)PC — 1 ((X))F)/m1 X is a surjection, as is Hy (X )y = H (XD -
Hy(X})C/(H X)€. Now Hy((X%)}) — (H1X)')S C H1 X} factors through

lim Hy((F,), X ) = Hi(X®) © Z))

(where ...(Fp)s XC — (Fp)s—1XC — ... is the tower of fibrations of Bousfield-
Kan, whose inverse limit is (X)}). Thus one has
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o

(H:1X)¢ Hy(XS)
ag 0
Hi(X%)) Hi(XS)® I} §
[~ 71
H(X)He —2 " (1X))% = (11 X)° o I)
(H:1X2)® [(H1 X)® (0 X)° @ I}/1

where im oy = imy;. u = surjection implies

(H1X})¢ = imoy +imé = imy; + imé.

We have
Hy(X€) % (H,X)® coker 6
eI =
Hy(X9) @ 2) 222 = (g1, )6y g 73— coker b0 ® )
hence & is onto, which is equivalent to coker & being finite. |

COROLLARY 1.5: Let G be a finite p-group of automorphisms of a compact
connected Lie group L. Let F C L be the subgroup of elements fixed by G and
F, C F the identity component. Then F/F, is a p-group. In particular, if G is
a p-subgroup of L, then Z1,G/(Z1G)o is a p-group.

Proof: F = L€ is a compact subgroup of L. mF = F/F, is thus finite.
F — mapg(EG, L) = L*G | the map of constants, is a homomorphism; therefore,
so is the function 1 FF — woF}f‘ — wo(L;,\)"G, which by Theorem 2 is a bijection.
Now Wo(L;,‘)"G is a p-profinite group, while mpF is finite. Hence both are finite
p-groups. |

2. Representations and Homotopy Representation: The Classical
Cases

The following special cases of groups satisfying the conclusion of Theorem A are
given by the following classical facts:
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PROPOSITION 2.1: If G, H are finite groups or tori, then any map BG — BH is
homotopic to a map of the form Bey.

One can extend the classical case slightly:

PROPOSITION 2.2: Let G be a finite group, and L a finite extension of a torus
T = T" by a finite group W: 0 - T - L -5 W — 1 . Then any map
f : BG — BL is homotopic to By for some homomorphism ¢ : G — L.

Proof: Let 0 —» V™ 2% T X% T — 0. Then V" is characteristic, hence W acts

on V*, and if |W]| divides n then H*(W,V™) —» H%(W,T) is surjective. Hence
one has a finite group L™ and a diagram:

N

| .

L"

|

W—;’

T
i
:
Now the obstruction to lifting a map

BL
<

X Ba™
B¢ —L +BL

lies in H*(BG, m;_1(FiberBo™)). But FiberBo™ = FiberBo} = T, and the only
obstruction to the above lifting problem is u, € H3(BG,m T = Z"). If n|m one
has

« BL"

Ba,",m

BL™
«

Bo™

BL

and H*(BG,Boy'™ Jun = u. Now the map FiberBo] — FiberBo§® induces
multiplication by m/non 7, T = Z™, thusif |G| divides m/n then H*(BG, Bog'™)
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is trivial, so up, = 0 and f : BG — BL lifts to BG — BL™. Since L™ is a finite
group, one can apply 2.1. |

PROPOSITION 2.3: Let L,L' be finite extensions of tori:
0 — " — L — W — 1
0 — T — L' — W — 1
Then any map f : BL — BL' is homotopic to By,¢ : L — L',
To prove this proposition we first prove the following convenient Lemma:

LEMMA 2.4: Let L be a topological group, W a finite group, and 1 —» W —=»
L = L — 1 an exact sequence. Given a map f : BL — BLy, where Lg
is a compact Lie group, assume that f o Br ~ B¢ for some homomorphism

¢: L — Lo; then f ~ By for some ¢ : L — Lq.

Proof: One has a fibration BW — BL — BL, and since by [M] the compo-
nent Co(BW, BLg) of the constant map in the function space map.(BW, BLy)
is contractible, any map f : BL — BLg with f o Bo ~ * factors uniquely (up to
homotopy) through BL (see, e.g., [Z, 1.5]). If f = foBr ~ B, then ¢ : L— L
satisfies B(¢ 0 o) ~ *.

But for finite groups W and compact Lie groups Lo any a : W — Lg is trivial
if and only if Ba ~ *. (This is trivial for Ly = U(n) and W = Z/nZ, and the
general case follows easily.) Hence pooc=+and p =¢or, L5 L5 L As
f o Br ~ By o Br, by the above f ~ Bep. |
Proof of 2.3: Given f : BL — BL', one has a diagram

BL —L"BL’

K(mBL,1) = BW—L—BW' = k(s BL', 1)
Then f' ~ By', and — replacing L' by the pullback

L L
|
w—
if necessary — one may assume W = W', ¢’ = 1. Now there exists a finite

extension W of W, W — W with lifting

T

W ——
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(e.g., the W = L™ of the proof of 2.2). For convenience, we thus may assume
W= W, L =L and one has x : W — L. Now given f : BL — BL', one obtains
a diagram

BL '—L"BL'

fo

K(mBL,1) = BW BW' = K(n,BL', 1)
Again, fo ~ By by Lemma 1.1. Hence, replacing L' by the pullback

r L

R

W——

we see that f factors through B, and again one may assume L = L' and one

has

BT™ BT™
si—L—Br

B Br
BW———BW .

Now, by Proposition 2.2 f o By : BW — BL' is homotopic to By' for some
x': W — L', where 7' o x' = 1. Since BT® — BL, BT™ — BL' are universal
covering spaces, with W as group of covering transformations, one has a covering
map f : BT" — BT™ which is W-equivariant.

Now f ~ B, using the following procedure:

[BT", BT™) = Hom(H,BT", H,BT™) = Hom¢(T",T™)

%) map.(BT", BT™) —» mymap(BT", BT™) = [BT", BT™] .

Hence @3 : T" — T™ is a W-equivariant homomorphism, By, : BT* — BT™
is W-equivariant, BT" has a W fixed point and ¢ could be extended to a
homomorphism ¢ : L= T" x W — L' @ T™ x W covering the identity on W,
Moreover, BW 2% L L BL is homotopic to By o By = Bx' and
fIBT® ~ By|BT™. Now BL = EW xw BT™, hence map(BL,BL') =,
[map(BT™, BL")]*¥. The evaluation at the fixed point ev : map(BT", BL') —
BL' is W-equivariant (where BL' is a trivial W-space), and a homotopy equiva-
lence of each component of map(BT™", BL'). Now, foBo and BpoBo = BaoByp,
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are in the same path component in map(BT",BL’) and By o Bo being W-
equivariant implies that this path component is W-invariant:

map(BT", BL')p o, — BL' .
f, By € [map(BT", BL')Bpes|*™ — (BL')*W = map(BW, BL') have homo-
topic images (f o Bx,By o Bx) in (BL')*"W — hence are in the same path
component in map(BL, BL') & map(BT", BL')*%. |

3. Path Components of Function Spaces

If L is a topological group and G acts on L by automorphism, then
E(LxG)— E(LxG)/L ~BL

is a G-map and principal L fiber bundle. This easily implies that for any free G
simplicial complex K, mapg(K, E(L % G)) — mapg(K,E(L xG)/L = BL)is a
Serre fibration, with fiber mapg(K, L). Taking K = EG one obtains:

PROPOSITION 3.1: Let L be a topological group and G a finite group acting on
L by automorphisms. Then L*C is a topological group and B(L*C) is a path
component of (BL)*C. If o : LS — L*@ is the natural inclusion of groups, then
Bo : BLS — B(L*®) — (BL)*® could be described as follows: L xG — Lx G
induces G-maps E(L¢)x EG — E(LxG) and Bm : BL° xEG — E(LxG)/L =
BL. Bo is the adjoint of Bm.

If G acts by inner automorphisms via ¢ : G —~ L, then L x G = L x G,
(BL)*¢ =~ map(BG,BL), B(L*®) = map(BG,BL)p,, and Bo : B(L%) =
BZ1¢ — B(L*C) = map(BG, BL)p, is the adjoint of Bm : BZ1 ¢ x BG — BL,
m: Zpp x G — L induced by ¢.

Proof: mapg(EG,E(L x G)) = E(L x G)*C is contractible; thus, its image
in (EL x G/L)"C is a path component, which could be described as B(L*€)
— since here the fiber mapg(K,L) = L*®. If ¢ : G — L defines an action
of G by inner automorphism, one has L x G — L x G and a G-map EG —
E(L x G) = E(L) x E(G) could be described as E(p,1) for (¢,1): G — L x G.
Then BL"*® = mapg(EG,(EL x EG)/L) = mapg(EG, BL x EG) is easily seen
to be equivalent to map(BG, BL), and im(mapg(EG, EL) — map(BG, BL)) =
map(BG, BL)g,. The identification of Bo is clear. 1
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Putting Lemma 1.2(b) and Proposition 1.3 together with Proposition 3.1, one
obtains:

THEOREM 3.2 (compare [DZ, Thm 1.1]): Let G be a p-group acting on a com-
pact connected Lie group L by automorphisms. Then the composite B(LE) —
B(L*¢) — (BL)*C induces an isomorphism on fundamental groups, and the
homotopy groups of the fiber of this map are uniquely p-divisible.

In particular, if ¢ : G — L describes an action by inner automorphisms, the
above map could be identified with Bmy : B(Zy¢) — map(BG,BL)p,. (Note
that if f : X — Y induces an isomorphism in m1(=), then its homotopy fiber is
nilpotent.)

THEOREM 3: For G and L as above and ¢ : G — L any homomorphism, inducing
m:ZrpxG — Land Bm: BZLpxBG — BL, the adjoint map Bmy : BZyp —
map(BG, BL)p, induces a homotopy equivalence

(Bmy)y : (BZry), — map(BG,(BL);\)B(,,;«) .

Proof: The homomorphism ¢ : G — L defines an action of G on L by conju-
gation, g - £ = €9 and we can identify Zyp with LG. There is a homotopy
equivalence (L€)5 — (L;‘)G s (L;,‘)"G with the second map in the role of o of
3.1. Theorem 3 follows by taking classifying spaces and making the identifications
of 3.1. |

Remark 3.3: Theorem 3.2 is valid for nonconnected Lie groups L, too: if Ly is
the identity component of L, and p : L — L/L, is the quotient map, let L; =
p~Y((L/Lo)%). Then (L;)¢ = LC and L}C = L*C, and obviously B(L?C) =
B(L*®) — (BL)*C is a path component. Thus one can replace L by L;, or
equivalently assume that G acts trivially on L/Lg, and that each component L,
of L is a G-space.

If LS = @, also L’C = @ (see e.g. [DFZ, J]). Thus one can further reduce L,
if necessary, to assume that LE N L, # @ for each component Ly of L. Hence
LG — L/L, is surjective and the square in
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is a pullback of groups, so the following is a pullback of spaces:
B(L§) B(L}%)

B(L?) B(L})

B(L/Lo)
and 3.2 for Ly implies 3.2 for L. |
PROPOSITION 3.4: Let G be a p-group and V' a subgroup of its center, with
t : V C G the inclusion. If ¢ : V — L is a homomorphism into a Lie group L,
let map(BG, BL)(,) denote the set {f|f o Bi ~ Byp}. If Ly C L is a subgroup

containing Zpp — so ¢ factors through @y : Zpp — Lo — then there is an
isomorphism momap(BG, BLo )(4,) = momap(BG, BL)(,).

Proof: One has maps BZp (Brmo)e map(BV, BLy)By, (BO; map(BG, BL)g,.
As (Bmg)y and (Bi). o (Bmg)y = (Bm)g induce isomorphisms on n(—) by
Theorem 3.2, so does (Bi),; and the homotopy groups of the homotopy fiber of
(Bt)« are uniquely p-divisible. Now G/V acts simply on BV — that is, for every
§ € G/V, the map §. is homotopic to the identity. Hence one obtains an action
of G/V on all function spaces map(BV,X), preserving path components. In
particular, (Bi). is G/V-equivariant. By Lemma 1.1(d), there is an isomorphism:
wo(map(BYV, BLo)’gz,/V)) =, mo(map(BY, BL)'};(f/V)) .
But we have map(BYV, BLO)’;,(SO/V) = map(BG, BLo)(y,) and similarly

map(BY, BL)’;;(f/V) = map(BG, BL)(,). "

PROPOSITION 3.5: Let G be a finite p-group and ¢ : G — L a homomorphism
into a compact Lie group L.

(a) Given a connected subgroup Lo C L with Zp¢ C Ly, such that ¢ =1 0¢q

for g : G — Ly and i : Ly C L, one has a homotopy equivalence
(Bi). : map(BG, B(Lo})Bg, — map(BG, B(L})By
(b) IfG is abelian and Z 1 is connected, then there is a homotopy equivalence
B((ZLy),) ~ map(BG, B((Z,);) B, -

Proof: For (a) we have Zpp x G — L factoring through Lg and Z1,00 = Z1¢.
Then (a) follows from Theorem 3. For (b), take Ly = Zp ¢ and apply (a). |
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4. Proof of Theorem A for G a p-Group

PROPOSITION 4.1: Let i : Ly — L be an inclusion of topological groups, and
¢ : G — L a homomorphism of a p-group into L. Assume:
(1) L/Ly is a finite simplicial complex.
(i1) m1(L/Lo) is finite.
(i) L — L/Lq has a local cross section.
(iv) The action of G on L/Lq induced by ¢ is simplicial.
Then:
(a) If f : BG — BLq is a homotopy lifting of By, then f ~ By, for some
wo : G — Ly, and i 0 g is conjugate to .
(b) If o, 4 : G — Lo satisfy Bpo ~ Byl and i oy, i 0 p} are both conjugate
to o, then wo and ) are conjugates in Ly.

Proof: (a) Consider:

L/L,

|

L/Lo XaG EL BL() ~ L/Lo XL EL
Xt £ Bi
EL/G~BG—5B¢ .p

where the section x corresponds to an element ¥ € (L/Lo)*C. By Proposition
1.3 ¥ ~ Xo, where ¥q is a constant — say EG — {zLo} C (L/Lo)®. Hence
z7YpG)z C Ly, and consequently f ~ f5, where fo : EL/G ~ BG — L/Ly X,
EL ~ BL has the form fo([ulg) = [¢Lo,u|r € L/Lo x1 EL foru € EL. The
identification L/Ly x1, EL ~ ELg/Ly = BLg is given by [yLo,u]r = [y~ u]L,;

hence, folu]lg = [¢7'u]L, is covered by a map EL — EL defined by u +» z7!

u’
which is a po-map. (Here @q : G — Lo is given by G -5 ¢G — zpGz™! C L,.)

Clearly ipy and ¢ are conjugates.

(b) Suppose pj = z71(i 0 o)z, for z € L, so that }G C Lo N zLez ™.
Let EL be considered a G-space via ¢g; then the identity EL — EL is a q-

map, and R,-1 : EL — EL is a p}-map, where R,-1(u) = z7'u. Now as
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in part (a), Bpo ~ By} implies that the two maps xo : [u]J¢ — [Lo,u]¢ and
x4 : [ug] + [z* Lo, u]e are homotopic.

The homotopy between them covers a G-homotopy between Xo : u — (Lo, u)
and %4 : u — (x(u)Le,y(u)). But [x(u)Le,y(u)lc = [zLe,u]c, so z(u)Le = gzLe
for some g € G. Since gzLy = zLy, it follows that the two constant G-maps
EL — {Ly} C L/Ly and EL — {zLo} C L/L¢ are G-homotopic. Consequently
Lo and zLg are in the same path component in (L/Lo)€, by Proposition 1.3.

Now Nyo acts on (L/Lo)¢ and Npgo \ (L/Lo)® may be identified with the
set of Lo-conjugacy classes of the L-conjugates of poG. Following arguments of
Quillen, this set may be also identified with a subset of the conjugacy classes of
isotopy subgroups of the right Ly action on G \ L. Since the quotient of this
action is compact, this set is finite.

Moreover, since |[Nppo : Zrpo] < 00, the set Zrpp \ (L/Lo)C is finite, and
consequently zLo and Lo are in the same class in Zppo \ (L/ Lo)G.

Thus there is a Zo € ZLpp such that ZgzLy = Lo for z = Zo'lzo for some
2o € Lo. Thus ¢} = 7oz = 25’ Zope 2y ‘20 = 25 0oz0, 50 o and @} are

conjugate. ||

COROLLARY 4.2: Let ¢1,¢, : G — L be two homomorphisms of a p-group into
a compact Lie group. If By ~ By, then ¢y and ¢, are conjugates. (The
converse is obvious.)

Proof: Embed i : L C U(n); then Bi o By, ~ Bio By, implies that the
representations i 0 ¢;, i 0 92 : G — U(n) have the same image in K°(BG).
By [A], the homomorphism R(G) — Ko(BG) is injective (G being a p-group);
hence one may assume that i 0 1 and i o 2 are conjugate. Now embed U(n) in
SU(n 4 1): since SU(n + 1)/L has a finite fundamental group, Proposition 4.1
applies. ]

LEMMA 4.3: Theorem A(a) holds for G = Z/p and L = SU(n) or U(n).

Proof: Using Lannes’s Theorem 1, it suffices to show that any .A-morphism
d’ : H'(BL7FP) - H.(Bz/vaP)

is of the form ¢ = H*(Ba, F,) for some homomorphism a : Z/p — L. (Assuming
this, and given f : BZ/p — BL, one will have H*(f,F,) = H*(Byp,F,) and
the injectivity of [BZ/p, BL] — Homu(H*(BL,F,), H*(BZ/p,F;)) will imply
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f ~ By.) Following Adams and Wilkerson (cf. [AW]), any morphism

P H‘(BL, Fp) = Fp{mel 1T2mgs """ xzmr]
— H***(BZ/p,F,) C H*(BZ/p,F,)

factors through H*(BTy,F,) where i : Ty, C L is a maximal torus:

H*(BLF,) —H(B) . pe(pr F,)

H*(BZ/p,Fy)

But for a torus T, any morphism ¢ : H*(BT,F,) — H*(BZ/p,F,) is of the form
H*(Ba,F,). ]

4.4. Proof of Theorem A(a) for G a p-group: Given a p-group G, assume
|G| = p". In view of Proposition 4.1 it suffices to prove Theorem A(a) for
L = SU(n). Given f : BG — BLy, where Ly is a compact Lie group, embed
i : Ly C SU(n) = L. Obviously, 71(SU(n)/Ly) is finite. If Bio f ~ By, then f
is homotopic to By for some homomorphism ¢g : G — Lg.

Suppose by induction that Theorem A(a) holds for G of order < p™! and
all compact Lie groups L. (The case r = 1 is Proposition 2.1.) Given a map
f:BG — BSU(n), where |G| =p",let V=Z/pbea subgroup of the center of
G, with i : V C ZG the inclusion. If the composition BV 25 BG L, BSU (n)
is null homotopic, then f ~ f; o Bp for some p: G — G/V and f, : BG/V —
BSU(n) (as observed in the proof of Lemma 2.4).

By induction there is a ¢, such that f; ~ B(yp;) and f ~ B(y; 0 p). Thus one
may assume that f o Bi «~ . By the induction hypothesis f o Bi ~ By for some
non-constant homomorphism ¢ : V — SU(n). Denote oV = C C SU(n), with
eV 2 V. Let Ly = Zsy(a)p, With j : Ly C SU(n) the inclusion. By Proposition
3.4, f: BG — BSU(n) has a unique (up to homotopy) lifting fo : BG — BL,,
with fo]|BV = By, for some @q : G ~ Lg.

The composition BV — BG ELN BL, Beg BLy/C is null homotopic, hence
Bpy o fo factors uniquely (up to homotopy) through BG/V: that is, one obtains
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a commutative homotopy pullback diagram:

g —Db Bl
Bp Bpg
BGIV BLy/C

By induction, f ~ B¢ for some ¢ : G/V — Lo/C. Form the pullback diagram
of groups

$1

G Lo
p )
) c/v—2—1,/c
where G 2 G. This induces a pullback diagram of classifying spaces:
BG—22 gy,
Bp ~[Bro
sev-22=1 BLo/C

Obviously fy : BG — BL factors as fo ~ B@o f; for some f; : BG — BG. But
G, G are finite groups and f1 ~ By, thus fo ~ B(¢ o) and f ~ B(jo@op).
]

5. The Case of Finite Nilpotent Groups

In view of Theorem 1, if G is a finite nilpotent group and L is a compact connected
Lie group, the set [BG, BL] may be easily analyzed:

Let G = [],ep, Gp, Where P is a finite set of primes and |G,| = pN®. As
VBG, — BG is a homology isomorphism one has

LEMMA 5.1: If L is connected, then map.(BG,BL) — [], map«(BG,,BL)
is a homotopy equivalence; in particular, [BG,BL] = [],[BG,,BL]. Thus
[BG, BL] =[] [Hom(G, L)/ conj].

Thus, the question whether 2 map f : BG — BL is of the form f ~ By for
some @ : G — L is equivalent to the following questions:
5.2 Given homomorphisms ¢, : G, — L for each p € Py, can one conjugate the
(p’s so that after conjugation 5" Gp C Ny, ZLg" (p5° = Zpppz; ) ?

5.3 For the case Py = {p,q} the above could be formulated as follows: Given
¢p:Gp — Land ¢4 : Gy — L, does Z1p, contains a conjugate of ¢,G,?
The following examples easily follow:
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PROPOSITION 5.4: (a) If G is a cyclic group, then any map f : BG — BL satisfies
f ~ By, where the homomorphism ¢ : G — L factors through a maximal torus
TL.

(b) If G is abelian, then any map f : BG — BU(n) satisfies f ~ By, for some ¢
such that oG C Ty(n)-

(c) If G® ¢ G™*! C --- is a sequence of finite abelian groups such that lim G™ is
divisible, then any compatible family of maps f, : BG, — BL factoring ?hrough
lim BG, satisfies f, ~ B, for some p, with ¢,G, C Tr. (d) Given f : BG —
EL there an embedding i : L C U(n), for some n, such that Bio f ~ Bep.

Proof: (a) If G is cyclic, then Gp 2 Z/p" and ¢,(G,) C T1, a maximal torus of
L. After conjugation, one may assume the ¢,(G,) are all contained in the same
maximal torus, and apply the principal of 5.2.

(b) If L = U(n), any finite abelian subgroup is contained in a maximal torus.
Thus again one may assume ¢,G, C T}, for the same torus Ty, and all p € P;.
(c) Here for each p one has a sequence By} : BG, — BL, with Bppt!|BGy ~
B3 Thus after conjugating ¢y *!, one may assume by induction that ¢3*'|G}
= ¢y The hypothesis implies that G} C p’G,’,"("’r). Now ¢ (Gy') C Zp} for
all n <m, and Zy;' C Z1p, for n > m. So the homomorphisms

G""\ G;MI/G;W "'
ZLey
roZL(p;

yield a map lim_, GJ' — moZrpy. Since the group moZ¢py is finite, this mor-
phism, and all GJ' — moZp ¢y, are trivial. Thus 9G* C (ZLpp)e for all m > n.
Now (Zrypy)e D (Zrpp*')o D -+ is a descending sequence of compact con-
nected Lie groups, so it must stabilize — i.e., for some m, Zyp* = Z Ltp:""l =
-+ = Ly, and all 3'G}' are contained in the center of a compact connected Lie
group, hence in a maximal torus. Now proceed as in (a) and (b).
(d) It suffices to prove this for L = U(n). If |P;| = m one can easily see that the
composite BG — BU(n) — BU(n,m) is homotopic to a map of the form By,



20 A. ZABRODSKY Isr. J. Math.

where ¢ is given by
Ppr X" X Ppo 1 Gpy X =+ X Gp,, = U() x---xU(n) > U(m). &

Example 5.5: The smallest example of an abelian group G with amap f : BG —
BL for which f # By is the following:

Let L= S0(3) and G = Z/2 x Z/6. Let @3 : Z/2 x Z/2 — S0(3) be generated
by two 180° rotations around perpendicular axes. Let @3 : Z/3 — S0(3) be the
(unique up to conjugacy) embedding. Since Zpp2 = imeps, no conjugate of imys
is contained in Zpy: and the map f : BG — BS0(3) satisfying f|BGp;, = By,
(pi = 2,3) is not homotopic to By for any ¢ : G — L. |

6. The Case G is a Torus

Let G = T™ be the n-torus. Assume given a map f : BG — BL, where L
is a compact and (without any loss of generality) connected Lle group. Let
(Z/m')" — T", By Proposition 5.4(c), BV, — B, prn L, BL lifts as
BV,;,' fo -—— BTy, 2%, BL in a coherent way. Hence lim_, BV,? = BV — BT" also
lifts to BTy. Since [BT™,K*] — [BV, K] for any profinite complete space
K*, one obtains a lifting
;

BIA
By [AM], one always has a lifting
(BTL)q
hq
(Biq
BT" BL (BL)q

(where (~)q is the rationalization).
To obtain a map BT™ — BTy, out of h and (h)q using the arithmetic square,
one needs the homotopy equivalence of the following composites:
B * Bf, A (Bfu)e
BI* % (BTi)e > (BTule
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Now comparing these two maps with (BT )g — (BL)g one obtains an inequality.
Moreover, as BTy, BL are rational H-spaces, (BT )q and (BL)q are products of
Eilenberg-MacLane spaces with (finitely many) nonvanishing homotopy groups,
concentrated in even dimensions — all being Z”* ® Q-vector spaces. Thus the
problem of #; ok ~ B, 0hq is just a matter of equality of morphisms of H*(—,Z*®
Q:

H*(BL,2" ® Q) 25 H*(BT.,2" ® Q) :"‘% )) H*(BT",Z"®Q),
vaohe)®
where (3; o hq)*Bi* = (%, o h)*Bi*

Again, by [AM, Theorem 1.7], (#; ok)* and (2 o hg)* differ by an element w
in the Weyl group of BTy: (9, o h)* = (92 0 (hg)*) ow*,w : BTy, — BTy, . Thus,
changing, say, hg to w o hg, we may assume that the equality (5, o k] = [6; o hq)
holds. One thus obtains a map k : BT" — BTy so that Biokh ~ f and
Big o hg ~ fq. The obstruction to Bio h ~ f lies in H°%4(BT" x,(BL)) =0
and thus, combining with Proposition 2.1, one obtains:

PROPOSITION 6.1 (Theorem A(a) for G = T"): Any map f : BT" — BL lifts
to amap h: BT™ — BTy; hence f ~ By for some ¢ : T" — L.

To prove Theorem A(b) for G a torus, one notices the following: Let V, =
(Z/p")" C T". Given 1,93 : T® — L with By, ~ By,, by Theorem A(b) for
G a p-group we have ¢ |V ~ ¢2|V>.

Now Zp(p1Vr) D Zir(¢1Vr41) D -+ must stabilize — that is, Zp(p1Vy,) =
Z1(p1Vro+1) = -+ - = Zrp1T™. Suppose p2|V}2 = . (¢|V} )27} replacing ¢; by
¢} = 12, if necessary, one may assume that ;|V? = ¢a|V;%. Now for r >
ro, p2|Ve = z,01|V, Pz 1. However, po|V;2 = ¢1|V,;? implies z, € Zi(p1}Vs,) =
Z1(p1{V?); hence 2|V = 1|V for all r > rg, so @2lVE = ¢1|V2. Since VE
is dense in T™, this implies ¢; = ¢;.

7. Extending the Torus

Proof of Theorem B: (a)Let V. =(Z/p")* CT"* =T. Given ¢ : T — L, denote
by ¢, its restriction to V.. Then there is an r¢ such that Zyp, = ZL¢p for all
r 2 ro. By Proposition 3.5(a)

map(BV;, B((Z1¢)})Bs, — map(BVy, B(L)))sq,
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and it also follows from Proposition 3.5(b) that map.(BVr, B(ZL¢}))Bg, = *.
As map(BT, X))y — lim.— map(BV;, X}')s,, one has

map(BT, B((Z1¢)}))ss — map(BT, B(L}))ss
map.(BT, B(ZL¢); ))Bp = *
map(BT, B((Z1¢)}))Be — B(ZLp)}) -

These three together yield

map,(BT, B(L}))Be — Rp(L/Z1¢) .
As this holds for all p, one has

map.(BT, B(L")) sy — (L/Z1y)" .

To compare map,(BT, BL)p, with map,(BT, BL")g, where BL" = B(L") =
(BL)", one uses the arithmetic square

BL BL*

BLq—(BL*)q

As BL ~g [[.-, K(Z,2n;), we have BL" ~q []., K(Z",2n;), and the bottom

i=1

map in the above diagram is actually the map

T[] k(@ 2n:) - I'[ K(Q",2n;),

i=1

where Q" = Z* ® Q. Hence BL — BL" is a principal fibration induced by a
map
r r
BL" - ] K(@"/Q,2ni) = [] K(2"/2,2n:)
i=1 i=1

and one has a fibration

map,(BT, BL)p, — map.(BT, BL")g; — map.(BT, H K(Z"/Z,2n,)) .

The latter is equivalent to [];_, K(Z"/Z,2m;), m; > 0 and Theorem B(a)

follows.
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For (b), note that if X is a rational H-space with 7,4¢X = 0, the homotopy
fiber of map(BT,X)s — map(BT,X"); is a product of Eilenberg-MacLane
spaces whose homotopy groups are finite dimensional Z*/Z modules — hence
rational H-spaces. As

map(BT, B((Z1¢)")) g — map(BT, BL")pg, ,

part (b) of the Theorem follows. |

THEOREM C: Let 0 » T -5 G —— Wg — 1 be a finite extension of a torus
T = T", let L be a compact connected Lie group, and let f : BG — BL satisfy
fIBT ~ By for some homomorphism ¢ : T — L. Then:

(a) There exists a homotopy commutative diagram

BT—22+Bz,0
Bal Bo’
fl
BG BNL¢

BT, lBr’
Ba

BWe BWry

where a : Wg — Wiy is a homomorphism and o : T — Z¢ is induced

by ¢, and f' covers f up to homotopy.

(b) If Zpyp is a torus, then f' ~ By' for some homomorphism ¢’ : G — Npy. In
particular, if L is simple, any map f : BL — BL induces an endomorphism
¢1: NT, — NTy such that By, is compatible with f.

Proof: (a) ¢ :T — L factors through ¢o : T — Zrp. Thus BT — BG 2,
BL factors through BZ .

Given w € Wg, let a,, : G — G be the inner automorphism induced by any
representative of w with a,T C T. Then Ba,, ~ 1 and thus By o Ba, ~ By and,
by Theorem A(b), ¢ and pa,, are conjugates, so there is an z € L with pa,, =
zpz~!. But as imp = impa,, = € Npy, the class of z in Npp/Zrp = Wiry
is uniquely determined. One can easily see that the assignment w — [z] € Wiy
induces a homomorphism a : Wg — Wip. Moreover, BZpyp admits a Wie-
action with

BZL(,O XWre EWup = BNch

and the map Byg : BT — BZ¢p is an a-map. Equivalently, if one considers
BZ 1y as a Wg-space under the action induced by a, then Bypg is Wg-equivariant.
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Now

map(BG’ BL)[sz] = mapw, (BT, BL)(qu)
mapw, (BT, BZL¢)(By,)] = map(BG, BN)[BW]

where N is the pullback

N Nry

| .

We Wre
By Theorem B(b), the fiber of map(BT,BZ.p)B,, — map(BT,BL)p, has
rational homotopy groups hence any Wg-map EWg — map(BT, BL)3g,, lifts
uniquely to a Wg-map EWg — map(BT,BZ1¢)By,, and thus BG — BL lifts
to BN, hence to BNp.
For (b): if L is simple and f : BL — BL has H*(f,Q) # 0, then H*(f,Q) is
an isomorphism. Let f|T® = By. By (a) one has

BT BZrp
|

BlNT BiVLﬁP

BW; BWip

But H*(f, @) is an isomorphism, hence ¢T C L is again a maximal torus Ty and
Z;, = T, and, by Proposition 2.3, fv ~ By;. |

8. Editor’s Postscript

The proposition below is easily obtained by combining the results of this paper

with facts from Lie theory,

PROPOSITION: Let f : BL — BH be a homotopy equivalence of compact, con-
nected, semi-simple Lie groups. Then there is an isomorphism of groups, L = H.

Proof: Let Tp be a maximal torus of L. Restriction of f to BT and an
application of Theorem A yields a homomorphism ¢ : Ty — H such that the
restriction of f to BTy is homotopic to By. The subgroup imy is compact,
connected and abelian, hence is a torus T. Let g : BH — BL be a homotopy
inverse to f. A similar application of Theorem A yields a homomorphism ¢ :
T — L such that g restricted to BT is homotopic to By. Since go f is homotopic
to the identity, Theorem A(b) yields an element r € L such that

Yoo =ziz!



Vol. 76, 1991 SPACES OF FUNCTIONS BETWEEN CLASSIFYING SPACES 25

where g : Ty — T is the factorization of ¢ through T and ¢ : Ty — L is the
inclusion of the maximal torus. Thus we can replace g by Ba,-1 0 g to obtain
the following diagram:

pr,—2¢0 . pr—Bto g1,

|,

BL BH—L—p|,

in which the squares commute up to homotopy, g and f are an inverse pair up
to homotopy (as Ba,-1 ~ id) and g, 1o are an inverse pair of homomorphisms.
In addition, we have factored 1o through a maximal torus, which perforce is TF.
Consequently, T is a maximal torus, now denoted Ty.

The construction in the proof of Theorem C gives a homomorphism a : Wi —
Whe. Since imgy is a maximal torus, we have Zy g9 = Ty and Wy o = Wy

Hence we have the following commutative diagram:

W xTy —T¢
a X gool ‘900

Wy xTg—Tu
Since ¢y is surjective and the action of Wy on Ty is effective, there is a unique
homomorphism « in the above diagram. The same considerations applied to 1,
give a unique homomorphism 8 : Wy — W, such that 9o is compatible with
Ba. Since 1o and ¢¢ form an inverse pair, so must o and 8. Now Theorem C
provides a homomorphism ¢ : N — Ny such that Bo and; a fortiori, o is a
homotopy equivalence.

To see that the homomorphism ¢ is an isomorphism, we note that both Ny and
Ny are compact, orientable closed manifolds and deg ¢ = +1 on each component,
so ¢ is surjective. Hence o may be regarded as a covering projection. Since ker o
is discrete and o is an equivalence, in fact ker o must consist of the identity
alone. Hence ¢ is an isomorphism. The main result in [CWW] asserts that,
under the hypotheses of the proposition, an isomorphism of normalizers Ny, with
Ny implies an isomorphism of L with H. |
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