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ABSTRACT 

In th i s  p a p e r  t h e  resu l t s  of  Dwyer  and  Zabrodsky  [DZ] are e x t e n d e d  by 

showing  t h a t  if L is a c o m p a c t  Lie g roup  and  G is e i ther  a p -group  or a 

torus ,  t h e n  every m a p  f : BG .-~ BL is homotop ic  to one induced  by a 

h o m o m o r p h i s m  ~ : G ~ L, and  two such  induced  m a p s  are  homotop ic  

if  a n d  only if the  cor responding  h o m o m o p h i s m s  are conjugate .  Several  

o the r  r e su l t s  re la ted  to m a p s  be tween classifying spaces ,  comple t ions ,  and  

f ibra t ions  are also deduced .  

Introduction 

In this paper we extend some of the results of [DZ], using a different approach. 

Our main theorem is the following: 

THEOREM A: Let  L be a compact  Lie group and let  G be e i ther  a p-group or a 

torus. Then:  

(a) E v e r y  m a p  f : B G  ~ B L  is homotop ic  to a m a p  B%0 : B G  ~ B L  where  

%0 : G ~ L is a homomorph i sm .  

(b) Let  %00,%01 : G ~ L be homomorphisrns .  Then  B%0o ~, B%01 i f  and only  i f  %0o 

and %ol are conjugate  - -  that is, i f  and only  i f  there  exis ts  an inner  automorphism 

ag : L --* L such that  %01 = ago %00. 

We shall use the following notations: 

map (X, Y) - the space of (unpointed) maps from X to Y, 

map . (X,  Y) - the space of pointed maps from X to Y, 

map ( X ,  Y ) I -  the path component of f : X --, Y in map (X, Y), 

* Deceased. This paper was prepared by John R. Harper from manuscripts left by 
Alex Zabrodsky. The editor is grateful to David Blanc for his help in preparing 
the paper for publication. 
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map.(X, Y)I- the path component of f : (X, *) --* (Y, *) in map.(X, Y), 
C(X, Y) = map(X, Y)0- the component of the constant map in map(X, Y), 

C ( X ,  Y) = map.(X, Y)0 - the component of the constant map in map.(X, Y), 

X~ - the Bousfield-Kan completion of X with respect to the finite field Fe, 

X ^ = lip X~, and similarly 7.^ = lip Z~, where Z~ = the p-adic integers, 

XQ - the rationalization of X. 

We use the standard notations associated with a group G and G-spaces X, Y: 

E G  - a free contractible G-space, 

B G  = E G / G  - the classifying space of G, 

X a - the fixed point set of X, 

mapG(X, Y) - the space of C-maps from X to Y, 

X ha = m a p a ( E G ,  X )  - the homotopy fixed point set of X. 

If L is a compact Lie group and ~o : G -~ L is a homomorphism of groups, we 

have the following notations: 

ZL~O -- the centralizer of ~oG in L, 

NL~ -- the normalizer of ~G in L, 

W L ~  = NL~/ZL~a, 

TL -- a ma~dmal torus in L, 

N T L  - the normalizer of TL (in L), 

WL = N T L / T L  - the Weyl group. 

In the proof of Theorem A and its extensions we use the following theorems of 

Lannes, Miller, Carlsson, and Dwyer-Zabrodsky: 

THEOREM 1 (Lannes [L, Thm. 7.1.1]): Let X be a 1-connected space such that 

each H i ( x ,  Fp) is finite, and let V be an e lementary  abelian p-group. Then  the 

natural  map 

[BV, X] -* HomA(H*(X, Fp), H*(BV, Fp)) 

is bijective. (Here Jt denotes the category of unstable algebras over the  mod-p  

S teenrod algebra.) 
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THEOREM 2 (Carlsson, Lannes, Miller; see, e.g., [M]): Let G be a finite p-group 

acting simplicially on a finite simplicial complex X .  Then the map ( x G )~  --~ 

(X~  ) ha, induced by X a ~ X hG, is a homotopy equivalence. 

THEOREM 3 (cf. [DZ], Thm 1.1): Let G be a finite p-group, L a compact Lie 

group, %0 : G --* L any homomorphism, and consider the homomorphism rn : 

Z L %0 x G ~ L induced by %0, and the corresponding map B m :  B Z L %0 x B G --+ B L. 

Then the adjoint map Bra# : BZL%0 ~ map(BG, BL)B~ induces a homotopy 

equivalence (Bm#)~ : (BZL%0)~ --* map(BG, (BL)~)B(~) . 

As a consequence of Theorem A and Theorem 3 one obtains: 

THEOREM B: Let %0 : T --* L be a homomorphism from a torus T = T" to a 

compact connected Lie group L. Then 

(a) map,( Br, B L )B~ fibers principally over ( L / ZL %0 ) ̂ with a connected fiber ho- 

motopy equivalent to a finite product of Eilenberg-MacLane spaces whose homo- 

topy groups are finitely generated Z ^ / Z  modules occurring in odd degrees. Con- 

sequently, the sutBciently high dimensional homotopy groups of map.  ( BT,  B L ) B~ 

are finite. 

(b) The homotopy groups of the fiber of map( BT,  B Z L %0 ) B~o ~ map( BT,  B L ) B~ 

are rational vector spaces. 

THEOREM C: Let 0 - - ~ T  ~, G r ~ W a  ~ 1 be a finite extension of a torus 

T = T n, let L be a compact connected Lie group, and let f : B G  --* B L  satisfy 

f ] B T  ,,, B%0 for some homomorphism %0 : T ~ L. Then: 

(a) There exists a homotopy commutative diagram 

B~ao 
BT • BZL~ 

B~[ I' [B¢' 
BG • BNL~ 

Bot BWa ~ BWL ~ 

where ~ : WG ~ WL%0 is a homomorphism, %00 : T ~ ZL%0 is induced by %0, and 

f '  covers f up to homotopy. 

(b) I f  ZL%0 is a torus then f '  ,,~ B%0' for some homomorphism %0' : G --* NL%0. 

In particular, i f  L is simple, any map f : B L  --* B L  induces an endomorphism 

%01 : NTL --~ NTL such that B%01 is compatible with f .  
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In the process of proving the main theorems, we prove some additional lemmas 

and propositions that may be interesting in their own right. For instance, the 

following theorem of Borel (see [B]) follows easily from Theorem 2: 

COROLLARY 1.5: Let G be a finite p-group of automorphisms of a compact 

connected Lie group L. Let F C L be the subgroup of dements  fixed by G and 

Fo C F the identity component. Then F/Fo is a p-group. In particular, i f  G is 

a p-subgroup of  L, then ZLG/(ZLG)o is a p-group. 

In the process of proving Theorem A, we prove the following: 

PROPOSITION 1.3(a): Let G and K be as in Theorem 2. I[ lh K is finite, then 

lroK G "* lroK hG is bijective. 

PROPOSITION 4.1: Let i : Lo C L be a cocompact pair of topological groups, 

with l h (L /Lo )  finite, and let G be a p-group. 

( a ) / f  f : B G  ~ BLo satisfies Bi  o f ,,~ B ~  for some homomorpMsm ~ : G ~ L, 

then f ,~ B~o, where ~o : G --* Lo is a homomorphism and ~ and i o ~o are 

conjugates. 

(b) Let ~o,~1 : G ---* Lo be homomorphisms. I f  B~o ~ B~I  and i o ~o, and 

i o ~1 : G --* L are conjugates, then ~o and ~1 are, too. 

ORGANIZATION OF PAPER. Corollary 1.5 and Proposition 1.3 are proved in 

Section 1. Theorem 3 is proved in Section 3, using material from Section 1. 

Theorem A is proved in two parts: the case where G is a p-group is proved in 

Section 4, as is Proposition 4.1 (from which Theorem A(b) follows in this case). 

The case where G is a torus is proved in Section 6, using results from Section 

2. [BG, BL], for G a finite nilpotent group, is analyzed in Section 5; Section 

7 contains the proof of Theorem B and Theorem C; and Section 8 contains a 

postscript by the editor. 

Editor's note: It should be pointed out that a version of Theorem A was ob- 

tained independently by Dietrich Notbohm in his thesis (cf. [N]). | 

1. H o m o t o p y  F ixed  Po in t s  and  C o m p l e t i o n s  

In this section we study some simple conclusions of Theorem 2 relating the fixed 

points and homotopy fixed points of an (uncompleted) finite G-simplicial complex 

X. First notice the following: 
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LEMMA i . I :  Let X be a G - C W  complex. Then 

(a) Every h E X hG, together with the inclusion X ha C map(EG, X )  ~- X ,  in- 

duces an action o[ G on ~rn( map( EG, X ), h) ~ 7rn( X ) and a homomorphism 

u .  : ~ . ( x  ha, h) ~ ~ . ( X )  G . 

(b) For n > 1, every action of a group G on K( A ,n ) ,  where K ( A , n )  ha ~ 0, is 

equivalent to an action o/. G on  the abelian (topological) group K(  A ,n )  by 

automorphisms. Hence K(  A ,n)  ha is again an abe/ian group and 

~m(g(A ,n )  he) ~ H"-m(G,A)  rorO < m <_ n .  

For n = 1 one again has to assume K ( A, 1) ha ~ 0 and then woK(A, 1) ha 

H~(G,A),  as sets, and ~q(K(A, 1)ha, h) ~ A a (where the action of a on 

A is determined by h). 

(c) ~/. 

(d) 

(e) 

I x . Y  

 ll,o t° 
xo " Yo 

is a homotopy pullback diagram of G-spaces and G-maps, then so is 
fhG 

Xha  , y 

x ~  , y :~  

For X0 = EG one concludes: every h E Yo ha induces a G structure on 

a suitable representative X of  the homotopy fiber of vo, and X ha is the 

homotopy fiber (over h) of v~ C. The G structure on X described above is 

characterized by the/'act that f : X ~ Y is a G-map, and v o f / 'actors 

through EG. 

Let X be a nilpotent G-space and ]et h E X ha. If the G-module (G- 

group,/'or n = 1) lrnX corresponding to h satisfies Hm(G,  ~rnX) = 0/'or 

n >_ m >_ 1, then bin of (a )  is an isomorphism. 

Suppose f : X ~ Y is a G-equivariant map, and the homotopy fiber V o f f  

is connected and has uniquely p-divisible homotopy groups. Suppose luther 

that Hk+i(G, 7rkV) = 0/.or i = O, 1 and k >_ 1. Then 7foX ha ~- 7roY ha, and 

the homotopy groups of the f~ber are uniquely p-divisible. 

As a consequence of 1.1 one has: 
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PROPOSITION 1.2: (a) Let X be a simply connected G-simplical complex. Then 

Iro(X ~a) ~ lro((X~) hG) is bijective and the homotopy fibers of X hG ---+ (X~ ) hG 

are connected and their homotopy groups are abelian and uniquely p-divisible. 

(h) If  X is nilpotent, then the set of path components of the homotopy fibers 

of X hG --, ( X ~ W  is isomo~Mc to the set (~ ,X ' ; )a l (~ ,X)  a = (,~,X';I,~,X) G, 

,,,here . ,X';  = (,~,X)'; ~ ,~,(X~) is the p-completion of the nilpotent group 
~rl X .  The fundamental groups of these homotopy fibers are extensions of a fro/re 

group of order prime to p by an abelian uniquely p-divisible group• 

Proof: (a) If V - .  X -* X;'  is a fibration, then any C-map EG -0 X ;  has 

a unique lifting• To see this, note that the homotopy groups of the fiber V are 

(uniquely) p-divisible. Hence the lifting problem 

EGxa X 

BG , EG xa X~ 

has a unique solution, as the obstructions for existence lie in H~+I(G, TrkV), 

k _> 2 and the obstructions for uniqueness lie in Hk(G,~rkV), k > 2 - and all 

groups vanish by 1.1(b). 

For the second assertion of 1.2(a), for any group H let (~  p)H denote the 

torsion subgroup of H modulo its p-torsion subgroup• Then one has exact se- 

quences 0 --, (~,+,X/torsion) ® Z; ' /Z  --. ~ ,V ~ (#  p )~ ,X --. 0 and for every 

h 6 (X~) hG the homotopy fiber over h in X hG is V ha by 1.1(c); now apply 

1.1(e)• 
(b) One has a diagram 

' KOhX, 1)-""K(~', X~, 1) 

wh~e V~ = K( (#  p)~,(X),  I) × , , X ~ / ~ X .  
X';' is the u~iver~a covering sp~e  of X;'. For h ~ (X;')"o one ohtans h, e 

K(~hX~, 1) ha and one can see that 7roK(*rzX, 1) hG -~, ~roK(*hX~, 1) t'o, hence 

l) "J¢ ~ 

V "X • X~ ̂ 

1 1 1 
14 
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one has ho E K O q  X,  1) ha covering hi. One has a fibration ~,ha ~ Vha  ~ Vlha, 

where V ~a and V~ a are fibers over h and hi respectively, and X is given a G- 

structure induced by h0. (b) now follows from (a). | 

PROPOSITION 1.3: Let G be a p-group and X a finite G-simplical complex. 

(a) Suppose either X is nilpotent or ~rlX is finite: then ~roX G ~-~ ~roX hG. 

(b) I f  X G , X  are nilpotent and 7rlX, 7 q ( X a , z o )  are abel/an for all zo E X G, 

then all the homotopy groups of  the fiber of X G --* X ha are abelian and 

uniquely p-divisible. 

Proof: (a) By Theorem 2, rcoX a ~-, 7ro(X~ ) a *', 7ro(X~) ~G, hence rcoX a 

~roX ha is 1-1. For X 1-connected, 7tO x h G  ~ 7ro(X~) ha is a bijeetion by 1.2(a); 

thus 7foX a "~ 7fox ha. Otherwise, consider the universal covering space )C: then 

h E X hG induces a G-structure on )(  and an element h E )~ha. Hence, by the 

argument above, Iz "~a c and ~ E ~G.  Hence h ~ a  c and c E X G. 

(b) The fibers V1, V2 of X a ~ (XG)~ and X ha ~ (X~)  hG respectively have 

the desired property, and the desired fiber is the same as that of V1 ~ V2. | 

PROPOSITION 1.4: I f  X is a finite nilpotent G simplicial complex, then 

H,(X G) (H,X) a 

has a finite cokernel. 

Proof." By 1.3 one has a surjection 7r0X ha --* zr0(X~') ~G. This implies that 

Irl (X~)  hG ~ 7r l ( (X~)V) /~qX v is a surjection, as is HI (XG)p - -~  H1 (X~') hG 

H I ( x ~ ) G / ( H 1 X )  ° .  Now HI( (XG)~)  ~ (H1X~)  a C H1X~ factors through 

A H,((F )oX a ) -- H,(X G) zp 

(where . . .  (Fp)aX a --* (Fp)a_IX G --~ . . .  is the tower of fibrations of Bousfield- 

Kan, whose inverse limit is (XG)~). Thus one has 
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to 
(H,X) a 

gt((xa)'; ) Ht(X a) ® Z'~ 

(H~X~IaI(H~X) a 

• HI(X a) 

6 

~.  (H,X;) a = (H,x) a ~ z'~ 

(.ix) ~ ~ z~/z 

where im o~1 = im71. tt = surjection implies 

(H1X~) G = imal  + ira6 = imT1 + im6. 

We have 

H,(ia) 60 • (TX)a  • cokir 6o 

H,(X~) ~ Z~ to ~ Z~ = ~1, (HIX)~) ~ Z~ ~ coke, t0 ® Z~ 

hence 6 is onto, which is equivalent to coker 60 being finite. | 

COROLLARY 1.5: Let G be a ~qnlte p-group of automorphisms of a compact 

connected Lie group L. Let F C L be the subgroup of elements tixed by G and 

Fo C F the identity component. Then FIFo is a p-group. In particular, i f  G is 

a p-subgroup of L, then ZLG/(ZLG)o is a p-group. 

Proof." F = L G is a compact subgroup of L. 7r0F = F/Fo is thus finite. 

F ~ mapG(EG, L) = L hG, the map of constants, is a homomorphism; therefore, 

so is the function ~'0F - -~ 7r0F~ ^ ha ~ro(Lp ) , which by Theorem 2 is a bijection. 

Now ~o(L~) hG is a p-profinite group, while r0F  is finite. Hence both are finite 

p-groups. | 

2. Representations and Homotopy Representation: The Classical 
Cases 

The following special cases of groups satisfying the conclusion of Theorem A are 

given by the following classical facts: 
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PROPOSITION 2.1: I f  G, H are finite groups or tori, then any map B G  ~ B H  is 

homotopic to a m a p  of the form B~o. 

One can extend the classical case slightly: 

PROPOSITION 2.2: Let G be a finite group, and L a finite extension of a torus 

T = T n b y a t ~ n i t e g r o u p W :  0 ~ T ~ L r ,  W--- ,  1 . Then any m a p  

f : B G  ~ B L  is homotopic to B~o for some homomorphism ~o : G ~ L. 

Proof: Let 0 ~ V n ~'* T ×~ T ~ 0. Then  V n is characteristic,  hence W acts 

on V n, and if IWI divides n then H 2 ( W , V  n) ---, H 2 ( W , T )  is surjective. Hence 

one has a finite group L n and a diagram: 

V, ~ a~ : T 

L n • L 

L _ L 
W " W  

Now the obst ruct ion to lifting a map  

BL" 

• ." [Ban 

BG / " BL 

lies in Hi(BG,  7ri-1 (FiberBa'~)) .  But F i b e r B a  n = FiberBa~'  = T, and the only 

obs t ruc t ion  to the above lifting problem is un E H2(BG,  r l T  = 7.n). If him one 

has 

• BL ~ 

Bo-n,m 

BL m 
, I  

I 

." . ' " "  [Barn 
m 

BG . BL 

* n ~ m  and H (BG, B a  o )un = urn. Now the map  F ibe rBa~  --~ F i b e r B a ~  induces 

mult ipl icat ion by m / n  on r l T =  Z" ,  thus if ]G[ divides m / n  then H*(BG,  Ba~ 'm) 
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is trivial, so u,.  = 0 and f : B G  ~ B L  lifts to  B G  ~ B L  m. Since L n* is a finite 

group ,  one can  a p p l y  2.1. 1 

PROPOSITION 2.3: Let L, L' be finite extensions of tori: 

0 ~ T n ~ L ~ W - - -*  1 

0 ~ T "  ~ L' ~ W '  - - *  1 

Then any map f : B L  -~ BL '  is homotopic to B~o, ~ : L ~ L'. 

To prove this proposition we first prove the following convenient Lemma: 

LEMMA 2.4: Let L be a topological group, W a finite group, and 1 --, W ~ 

L % L ---, 1 an exact sequence. Given a map f : B L  ---, BLo,  where L0 

is a compact Lie group, assume that f o B r  ~ B~  for some homomorphism 

: L --, Lo; then f ~ B ~  for some ~ : L ---, Lo. 

Proof." One has a fibration B W  ---, B L  ---, BL,  and since by [M] the compo- 

nent Co(BW, BLo)  of the constant map in the function space map. (BW, BLo)  

is contractible, any map ] : B L  --* BLo with j o B a  ~ * factors uniquely (up to 

homotopy) through B L  (see, e.g., [Z, 1.51). If / = f o BT ..~ B~,  then ~ : L --* L0 

satisfies B(~ o a) ~ *. 

But for finite groups W and compact Lie groups L0 any a : W --4 L0 is trivial 

if and only if B a  -~ *. (This is trivial for Lo = U(n) and W = Z / n Z ,  and the 

general case follows easily.) Hence ~ o a = • and ~ = ~ o r,  L __L, L ~ ~ L0. As 

f o B~ "~ B ~  o Br ,  by the above f ~, B~o. I 

Proof of 2.3: Given f : B L  --* BL' ,  one has a diagram 

BL ~ " BL' 

1,1 
K(,~BL,  1) = B W  "BW' = K ( ~ B L ' ,  1) 

Then f ~- B~o ~, and - -  replacing L ~ by the pullback 
L~ • L 

W ' W' 

if necessary - -  one may assume W = W',  ~0' = 1. Now there exists a finite 

extension l~  of W, W ~ W with lifting 

L 

° 

W .W 



Vol. 76, 1991 SPACES OF FUNCTIONS BETWEEN CLASSIFYING SPACES II 

(e.g., the l~  = L n of the proof of 2.2). For convenience, we thus may assume 

I~  = W, L = L and one has X : W ~ L. Now given f : B L  ---* BL ' ,  one obtains 

a diagram 

B L  ~ • B L '  

l,ot 
K(TtBL, 1) = BW • BW' = K(r~BL', 1) 

Again, f0 ~ B~00 by Lemma 1.1. Hence, replacing L'  by the pullback 

L ~ • L 

W : W' 

we see that  f factors through BL ' ,  and again one may assume L = L ~ and one 

has 

BT ~ .BT ~ 

L L 
BL " BU 

B W  • B W  . 

Now, by Proposition 2.2 f o BX : B W  -.-* BL'  is homotopic to BX t for some 

X ~ : W ---* L ~, where ~'~ o X t = 1. Since B T  n .--* BL,  B T  m --.* B L  ~ are universal 

covering spaces, with W as group of covering transformations, one has a covering 

map  ] : B T  '~ ---, B T  m which is W-equivariant. 

Now ] ~ B~o2 using the following procedure: 

[BT",  B T  m] "-', I 'Iom(H2BT n, H 2 B T  m) = H o m c ( T  n, T m) 

B ( - )  
, m a p . ( B T " , B T  m) , 7 romap(BT" ,BT  m) = [BTn,BT '~] .  

Hence ~o2 : T "  ~ T rn is a W-equivariant homomorphism, B~2 : B T "  --. B T  m 

is W-equivariant, B T "  has a W fixed point and ~02 could be extended to a 

homomorphism ~o : L ~ T "  x W ~ L'  ~ T m ~ W covering the identity on W. 

Moreover, B W  BXb B L  ~ BL '  is homotopic to B~o o BX = BX ~ and 

f [ B T "  .., B~o[BT n. Now B L  "~ E W  X w B T " ,  hence map(BL,  BL ' )  -~ 

[map(BT n, BL')] hw. The evaluation at the fixed point ev : m a p ( B T " , B L ' )  ---. 

BL '  is W-equivariant (where BL '  is a trivial W-space), and a homotopy equiva- 

lence of each component o f m a p ( B T " ,  B L '). Now, f o B a  and B~ooBa = Bao Bcp2 
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axe in the same path component in map(BT", BL' )  and B ~  o Ba  being W- 

equivaxiant implies that this path component is W-invariant: 

map(BT", BL')B~oa ~ BL '  . 

f,B~o • [map(BTn, BL')B~oo~,] hW ~-~ (BL')  hW = map(BW,  BL ' )  have homo- 

topic images ( f  o BX, Bqo o BX) in (BL' )  hw - -  hence axe in the same path 

component in map(BL, BL' )  ~ map(BT", BL' )  hW. | 

3.  P a t h  C o m p o n e n t s  o f  F u n c t i o n  S p a c e s  

If L is a topological group and G acts on L by automorphism, then 

E ( L  >~ G) --* E (L  )~ G) / L  ~- B L  

is a G-map and principal L fiber bundle. This easily implies that for any free G 

simplicial complex K, mapa(K, E ( L  ~ G)) --* mapa(K, E ( L  >~ G ) / L  = B L )  is a 

Serre fibration, with fiber mapa(K, L). Taking K = E G  one obtains: 

PROPOSITION 3.1: Let L be a topological group and G a tlnite group acting on 

L by automorphisms. Then L ha is a topological group and B ( L  ha) is a path 

component of (BL)  ha. I f  a : L a --* L ha is the natural inclusion of groups, then 

B a  : B L  a --+ B ( L  ha) "--* (BL)  ha could be described as foflows: L a x G --* L x G 

induces G-maps E ( L  a) x E G  ~ E ( L  >~ G) and B m :  B L  a x E G  ~ E (L  >4 G ) / L  = 

BL.  Ba  is the adjoint of Bin. 

I f  G acts by inner automorphisms via ~ : G --* L, then L ~ G ~- L x G, 

(BL)  ha ~-- map(BG,  BL) ,  B (L  he) "~ map(BG,  BL)B~,  and Ba  : B ( L  a) = 

BZL~a ~ B ( L  ha) ~- map(BG,  BL)B~ is the adjoint of Bin  : B Z L ~  × B G  ---* BL ,  

m : ZL~O × G ---+ L induced by ~. 

Proof'. mapa(EG, E ( L  >4 G)) = E (L  >~ G) he is contractible; thus, its image 

in (EL  >4 G/L)  hv is a path component, which could be described as B ( L  ha) 

- -  since here the fiber mapv(K, L) = L hG. If ~0 : G ~ L defines an action 

of G by inner automorphism, one has L × G ~* L >4 G and a G-map E G  

E ( L  × G) = B(L)  × E(G) could be described as Z(~, 1) for (~, 1): G ~ L × G. 

Then B L  ha ~ mapa(EG, (EL  × E G ) / L )  ~ mapa(EG, B L  × EG)  is easily seen 

to be equivalent to map(BG, BL) ,  and im(mapa(EG, E L )  --+ map(BG, BL ) )  = 

map(BG, BL)B~.  The identification of Ba  is clear. | 



VoL 76, 1991 SPACES OF FUNCTIONS BETWEEN CLASSIFYING SPACES 13 

Putting Lemma 1.2(b) and Proposition 1.3 together with Proposition 3.1, one 

obtains: 

TtlEOREM 3.2 (compare [DZ, Thm 1.1]): Let G be a p-group acting on a com- 

pact connected Lie group L by automorphisms. Then the composite B(L G) --* 

B(L ha) ¢--* (BL) ~a induces an isomorphism on fundamental groups, and the 

homotopy groups of the fiber of this map are uniquely p-divisible. 

In particular, if  ~ : G --* L describes an action by inner automorphisms, the 

above map could be identified with Bin# : B(ZL~) ~ map(BG, BL)B~. (Note 

that if  f : X ~ Y/nduces  an isomorphism in ~r1(-), then its homotopy fiber is 

nilpotent.) 

TItEOREM 3: ForG and L as above a n d ~  : G --* L any homomorphism, inducing 

m : ZL~xG --* L andBm : B Z L ~ x B G  --~ BL, theadjointmapBm# : BZL~ 

map(BG, B L ) B~ induces a homotopy equivalence 

(Bm#)~ : (BZL~)~ --* map(BG,(BL)~)B(~)  . 

Proof." The homomorphism ~ : G ~ L defines an action of G on L by conju- 

gation, g • ! = £~(g), and we can identify ZL~ with L a. There is a homotopy 

equivalence (La)~ ~ (L~) a a ,  (L~) ha with the second map in the role of a of 

3.1. Theorem 3 follows by taking classifying spaces and making the identifications 

of 3.1. | 

Remark 3.3: Theorem 3.2 is valid for nonconnected Lie groups L, too: if L0 is 

the identity component of L, and p : L --.+ L/Lo is the quotient map, let L1 = 

p-l ( (L/L0)a) .  Then (r,1)a = La and L[ G = L ha, and obviously B(L  a) = 
B(L ha) ---+ (BL) ha is a path component. Thus one can replace L by L~, or 

equivalently assume that G acts trivially on L/Lo, and that each component Lo 

of L is a G-space. 

If L~ = 0, also L~ a = O (see e.g. [DFZ, J]). Thus one can further reduce L1, 

if necessary, to assume that  L 6 N La ~ O for each component La of L. Hence 

L c --* L/Lo is surjective and the square in 

L ~ .Lh~ 
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is a pullback of groups, so the following is a pullback of spaces: 

B(Lao) . B(Lho a) 

L 
B(L a) • B(L'O) 

N k ' X B ( L / L o ) /  

and 3.2 for L0 implies 3.2 for L. | 

PROPOSITION 3.4: Let G be a p-group and V a subgroup of its center, with 

i : V C G the inclusion. I f  ~ : V --+ L is a homomorphism into a Lie group L, 

let map(BG,  BL)(~) denote the set { f i r  o Bi  ~ B~} .  I f  Lo C L is a subgroup 

containing ZL~ - -  so ~ factors through ~o : ZL~ --* Lo - -  then there is an 

isomorphism ~romap(BG, B Lo )(,o) - -~  romap( BG, B L )(~,). 

Proof." One has maps BZL~ (S,.o~# map(BV, BLo)o~o (Bi); map(BG, BL)B~. 

As ( B m o ) #  and (B i ) ,  o (Bmo)# = (Bin)# induce isomorphisms on ~ ' , ( - )  by 

Theorem 3.2, so does (Bi) , ;  and the homotopy groups of the homotopy fiber of 

(Bi ) ,  axe uniquely p-divisible. Now G / V  acts simply on B V  - -  that is, for every 

6 G / V ,  the map ~, is homotopic to the identity. Hence one obtains an action 

of G / V  on all function spaces map(BV, X) ,  preserving path components. In 

particular, (B i ) ,  is G/V-equiwriant .  By Lemma 1.1(d), there is an isomorphism: 

h(a/V) ~- h(G/V) 
lr0(map(BV, BL0)B~o ) , ~r0(map(BV, BL)B ~ ) .  

But we have map(BV, BLo)~(ff/V) = map(BG, BL0)(~o) and similarly 

map(BV,  BL)~(ff /v)  = map(BG,  BL)(~).  | 

PROPOSITION 3.5: Let G be a finite p-group and ~ : G --* L a homomorphism 

into a compact Lie group L. 

(a) Given a connected subgroup Lo C L with ZL9  C Lo, such that ~o = i o ~o 

/or ~0 : G --+ L0 and i : Lo C L, one has a homotopy equivaJence 

(Bi) .  : map(BG, ^ = , map(BG,  

(b) I f  G is abe//an and ZL~p is connected, then there is a homotopy equivalence 

B((ZL~o)'~)'~ map(BG,  B((Z~)~)B¢~o . 

Proof." For (a) we have ZL~O x G ---* L factoring through L0 and ZLo~O0 = ZL~O. 

Then (a) follows from Theorem 3. For (b), take L0 = ZL~o and apply (a). | 
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4. P r o o f  o f  T h e o r e m  A for G a p - G r o u p  

15 

PROPOSITION 4.1: Let i : Lo ¢-} L be an inclusion of  topological groups, and 

~o : G ~ L a homomorphism of  a p-group into L. Assume: 

(i) L/Lo  is a finite simplicial complex. 

(ii) ~r~(L/Lo) is finite. 

(iii) L ~ L /Lo  has a locM cross section. 

(iv) The action of  G on L /Lo  induced by 9 is simplicial. 

T~en: 

(a) f f  f : B G  ~ BLo is a homotopy lifting of  B~o, then f ,,, Bgo for some 

90 : G --* Lo, and i o ~ao is conjugate to 9. 

(b) g 9 o , 9 ~  : a --, Lo satisfy Bgo "" B~o and i o 90, i o 9~ are both conjugate 

to ~, then 9o and ~ are conjugates in Lo. 

Proof: (a) Consider: 

L/Lo 

L/Lo xa EL. • BLo "" LILo xL EL 

EL/G ", BG , BL 

where the section Xl  corresponds to an element ~ E (L /Lo)  ha. By Proposition 

1.3 :~ ,-, ;~0, where ~o is a constant - -  say E G  -* {xL0} C (L /Lo)  G. Hence 

x- I (~ ,G)x  C Lo, and consequently f -,- fo, where fo : E L / G  ~- B G  -* L /Lo  XL 

E L  ~-- BLo has the form fo([u]G) = [xLo,u]L E L/Lo XL E L  for u e EL .  The 

identification L/Lo XL E L  ~_ ELo/Lo  = BLo is given by [yLo,u]L -- [y-lU]Lo; 

hence, fo[u]G = [x-lU]Lo is covered by a map E L  --* E L  defined by u ~-} x - l u ,  

which is a 90-map. (Here 90 : G --* L0 is given by G ~-~ 9G -~ xcPGx -1 C Lo.) 

Clearly i~o0 and ~ m:e conjugates. 

(b) Suppose qo0 t = x - l ( i  o 9o)x, for x C L, so that 9~G C Lo N zLoX -1. 

Let E L  be considered a G-space via 90; then the identity E L  ~ E L  is a ~oo- 

map, and R~-t : E L  -* E L  is a ~ooLmap, where Rx- , (u )  = x - l u .  Now as 
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in part (a), B~o0 ~ B~ol0 implies that the two maps Xo : [u]a ~-* [Lo,u]G and 

Xlo : [UG] ~ [zULo, u]a are homotopic. 

The homotopy between them covers a G-homotopy between )~0 : u ~ (L0, u) 

and YC~ : u ~ (X(u)Lo, y(u)). But [)C(u)Lo, y(u)la = [xLo, ulG, so x(u)Lo = gxLo 

for some g 6 G. Since gxLo = xLo, it follows that the two constant G-maps 

E L  --} {L0} C L/Lo and E L  --} {xL0} C L/Lo are G-homotopic. Consequently 

Lo and xLo are in the same path component in (L/Lo)  G, by Proposition 1.3. 

Now NL~O acts on (L /Lo)  a and NL~O \ (L /Lo)  c may be identified with the 

set of L0-conjugacy classes of the L-conjugates of %o0G. Following arguments of 

Quillen, this set may be also identified with a subset of the conjugacy classes of 

isotopy subgroups of the right L0 action on G \ L. Since the quotient of this 

action is compact, this set is finite. 

Moreover, since ]NL~o : ZL%OO] < co, the set ZL~O \ (L /Lo)  a is finite, and 

consequently xLo and Lo are in the same class in ZL%OO \ (L /Lo)  G. 

Thus there is a Z0 6 ZL~0 such that ZoxLo = Lo for x = ZolxO for some 

x0 6 L0. Thus ~ = x-l%Oox = xolZo~oZo~xo = xo*~Ooxo, so ~o0 and ~ are 

conjugate. | 

COROLLARY 4.2: Let ~1,~2 : G--* L be two homomorphisms of a p-group into 

a compact Lie group. If  B~I ~" B%o2, then ~1 and ~2 are conjugates. (The 

converse is obvious.) 

Proof: Embed i : L C U(n); then Bi o B~ol ~, Bi  o B~2 implies that the 

representations i o ~oi, i o ~2 : G --} U(n) have the same image in K°(BG) .  

By [A], the homomorphism R(G)  -4 Ko(BG)  is injective (G being a p-group); 

hence one may assume that i o ~1 and i o %o2 are conjugate. Now embed U(n) in 

SU(n  + 1): since SU(n  + 1) /L  has a finite fundamental group, Proposition 4.1 

applies. | 

LEMMA 4.3: Theorem A(a) holds for G = Z/p  and L = SU(n)  or U(n). 

Proof: Using Lannes's Theorem 1, it suffices to show that any A-morphism 

¢ : H*(BL, Fp) -~ H*(BZ/p,F v) 

is of the form ¢ = H*(Ba ,  Fp) for some homomorplfism a : Z/p  ~ L. (Assuming 

this, and given f : B Z / p  ~ BL ,  one will have H*(f ,  Fv) = H*(B~,Fp)  and 

the injectivity of [BZ/p, BL] ~ HomA(H*(BL,  ~'p), H*(BZ /p ,  Fp)) will imply 
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f ,~ B~0.) Following Adams and Wilkerson (cf. [AWl), any morphism 

~b : H*(BL, Fp) = Fp[x2ml,x2m2,--. ,X2m,] 

H'v 'n(BZ/p,  Fv) C H*(BZ/p,  Fp) 

factors through H*(BTL,Fp) where i :TL C L is a maximal torus: 

17 

H'(BL, Fv) H*(Bi) , ~H*(BiL'FP) 
H" (BZ/p, Fv) 

But for a torus T, any morphism ~b : H*(BT, Fp) ~ H*(BZ/p ,  Fp) is of the form 

m 

4.4. P r o o / o f  Theorem A(a) for G a p-group: Given a p-group G, assume 

[G I = pr. In view of Proposition 4.1 it suffices to prove Theorem A(a) for 

L = SU(n). Given f : BG --* BLo, where L0 is a compact Lie group, embed 

i : L0 C SU(n) = L. Obviously, xl (SU(n) /Lo)  is finite. If Bi o f ,,, B~o, then f 

is homotopic to B~o0 for some homomorphism ~o0 : G -* L0. 

Suppose by induction that  Theorem A(a) holds for G of order _< pr-I  and 

all compact Lie groups L. (The case r = 1 is Proposition 2.1.) Given a map 

f : BG ~ BSU(n) ,  where [G[ = pr, let V ~- Z ip  be a subgroup of the center of 

G, with i : V C ZG the inclusion. If the composition B V  v i  BG ! ~ BSU(n)  

is null homotopic, then f ,,~ f l  o Bp for some p : G --* G / V  and fl  : B G / V  

BSU(n)  (as observed in the proof of Lemma 2.4). 

By induction there is a ~o~ such that  f] ~ B(~oa ) and f ,,~ B ( ~  o p). Thus one 

may assume that  f o B i  ~ *. By the induction hypothesis f o Bi ,~ B~ for some 

non-constant homomorphism ~o : V ~ SU(n). Denote ~oV -- C C SU(n), with 

~0V -~ V. Let L0 -- Zsv(n)~o, with j : L0 C SU(n) the inclusion. By Proposition 

3.4, f : BG ~ BSU(n)  has a unique (up to homotopy) lifting f0 : BG --* BLo, 

with fo lBV = B~oo for some ~o0 : G ~ L0. 

The composition B V  --* BG I.~ BLo apoj BLo /C  is null homotopic, hence 

Bpo o fo factors uniquely (up to homotopy) through BG/V:  that  is, one obtains 
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a commutative homotopy pullback diagram: 

fo 
B G  " BLo 

BG/V " BLolC 

By induction, ] ,,~ B~  for some ~ : G/V ~ Lo/C. Form the pullback diagram 

of groups 
0" ~1 "L0 

G/V "Lo/C 
where G ~ G. This induces a pullback diagram of classifying spaces: 

BO B~I "BLo 

B~I B ~ [Bpo 

BG/V "" / ~ BLo/C 

Obviously f0 : BG ~ BLo factors as f0 "~ B~  o f l  for some f l  : BG ~ BG. But 

G, O are finite groups and f ,  ,-, B~I ,  thus /0  '~ B(~3 o ~o 1 ) and f ,-, B(j  o ~ o ¢Pl). 

5. T h e  Case  o f  Fini te  N i l p o t e n t  G r o u p s  

In view of Theorem 1, if G is a finite nilpotent group and L is a compact connected 

Lie group, the set [BG, BL] may be easily analyzed: 

Let G = rip~p~ Gp, where Px is a finite set of primes and IGp[ = pN(v). As 

VBGp ~ BG is a homology isomorphism one has 

LEMMA 5.1: If  L is connected, then map.(BG, BL) --* I Ivmap . (BGp,BL ) 

is a homotopy equivalence; in particular, [BG, BL] ~- rIp[BGv, BL  ]. Thus 

[BG, BL] ~- rIv[Hom(Gp, L)/conj]. 

Thus, the question whether a map f : BG --* BL is of the form f ,~ B~o for 

some ~o : G --4 L is equivalent to the following questions: 

5.2 Given homomorphisms ~0p : Gp ~ L for each p E P1, can one conjugate the 
z p  Zq zp  . ~p's so that  after conjugation qop G v C Nq¢p ZL~q (~Pp = XP~PPXp 1) ? 

5.3 For the case P1 = {P, q} the above could be formulated as follows: Given 

~Op : G v ~ L and ~oq : Gq ~ L, does ZL~Op contains a conjugate of ~gGq? 

The following examples easily follow: 
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PROPOSITION 5.4: (a) I fG is a cyclic group, then any map  f : BG ---* B L  satisfies 

f -~ B~o, where the homomorphism ~ : G ~ L factors through a maximal torus 

TL. 
(b) If  G is abelian, then any map f : BG --~ BU(n)  satisfies f ~ B~o, for some qo 

such that ~G C Tv(,) .  

( c ) / - f G "  C G "+1 C "'" is a sequence of finite abelian groups such that lira G'* is 

divisible, then any compatible family of maps  f .  : B G ,  ---} B L  factoring through 

1ira B G ,  satisfies f ,  ,,, B ~ ,  for some ~ ,  with ~ , G n  C TL. (d) Given f : BG ---* 

BL  there an embedding i : L C U(n), for some n, such that Bi  o f ,,, B~.  

Proof." (a) If G is cyclic, then G v ~- Z /p  r and ~v(Gp) C TL, a maximal  torus of 

L. After conjugation, one may assume the ~v(Gv) are all contained in the same 

maximal  torus, and apply the principal of 5.2. 

(b) If L = U(n),  any finite abelian subgroup is contained in a maximal  torus. 

Thus again one may assume ~vGp C TL for the same torus TL and all p E P1. 

(c) Here for each p one has a sequence B ~ :  BG~ --} BL,  with B~o~ +1 [BG~ ,,~ 

B ~ .  Thus after conjugating ~ + 1 ,  one may assume by induction that  ~v ,+1 [Gp n 

= ~ .  The hypothesis implies that  G~ C prG~ ( 'x) .  Now ~ ( G ~ )  C Z L ~  for 

all n <_ m, and Z~'~ C Z L ~  for n _> m. So the homomorphisms 

\ 
a~+l , a~,+2 

/ 
z ~  

1 
.oZL~, 

yield a map  l im~  G'~ ---* lroZLT'~. Since the group 7roZLT'; is finite, this mor- 

phism, and all G'~ ~ ~roZL~'~, are trivial. Thus ¢2G~ C (ZL¢2'~)o for all m >_ n. 

Now (ZL~O'~)o D (ZL~'~+I)o D . . .  is a descending sequence of compact con- 

nected Lie groups, so it must stabilize - -  i.e., for some m, ZL~'~ = ZLT'~ +1 = 

• L0, anda l l  m m "" = ~v Gv are contained in the center of a compact connected Lie 

group, hence in a maximal  torus. Now proceed as in (a) and (b). 

(d) It  suffices to prove this for L = V(n). If [F~[ = m one can easily see that  the 

composite BG -.-* BU(n)  ---, BU(n, m) is homotopic to a map  of the form B~,  
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where cp is given by 

~p, × . . .  × ~op, : Gp, × . . .  × Gp~ -~ U ( , )  × . . .  × U(n)  ~ U(m) .  | 

Example 5.5: The smallest example of an abelian group G with a map f : BG --~ 

B L  for which f 76 B~ is the following: 

Let L = S0(3) and G = Z/2 x Z/6. Let ~ 2 : Z / 2  x Z/2  --* S0(3) be generated 

by two 180 ° rotations around perpendicular axes. Let 7~3 : Z/3  ---, S0(3) be the 

(unique up to conjugacy) embedding. Since ZL~2 = imp2, no conjugate of im~n 

is contained in ZL~2 and the map f : B G  ---, BS0(3) satisfying f lBGr ,  = Bgp,  

(pi = 2, 3) is not homotopic to B~ for any 7~ : G - ,  L. | 

6. T h e  Case  G is a Torus  

Let G = T"  be the n-torus. Assume given a map f : B G  --* BL ,  where L 

is a compact and (without any loss of generality) connected Lie group. Let 

Vm" = (Z/m!)" ~ T". By Proposition 5.4(c), BV~, -~ BT" I BL lifts as 

BV,~ lo ~. BTL B_~ B L  in a coherent way. Hence lim... BV,~ = B V ~  ---, B T "  also 

lifts to BTL. Since [BY n, K ^] ~-~ [BV~, K A] for any profmite complete space 

K ^, one obtains a lifting 

BTL ̂  

B'~ • BL . BL ̂  

By [AM], one always has a lifting 

BT" 

/ ( m2L ) .  

I (B~). 
• BL . (BL)Q 

(where ( - )Q is the rationalization). 

To obtain a map B T  n -* BTL out of h and (h)Q using the arithmetic square, 

one needs the homotopy equivalence of the following composites: 

B~L %., (B~L)Q BT" 

BT" ~ ( BTL )O v, ~ (B[FL)Q 
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Now comparing these two maps  with (BTL)o  "-" (BL)o one obtains an inequality. 

Moreover, as BTL, B L are rational H-spaces, ( B~'L )~ and ( B L )o are products of 

Eilenberg-MacLane spaces with (finitely many) nonvanishing homotopy groups, 

concentrated in even dimensions - -  all being Z ̂  ® Q-vector spaces. Thus the 

problem of 5~ o h ~ 5~ o ho is just a matter of equality of morphisms of H* ( - ,  Z ̂  ® 
~): 

(~oh) ° 
H.(BL,  Z^ ®Q) s ~  H.(BTL,Z^ ® Q) 

(v~oh~)* 

where (52 o hQ)*Bi* = (5~ o h)*Bi* 

H * ( B T  n, Z ̂  ® Q ) ,  

Again, by [AM, Theorem 1.7], (51 o h)* and (52 o h0)* differ by an element w 

in the Weyl group of BTL: (51 o h)* = (52 o (hQ)*) o w*, w :  BTL --* B T L .  Thus, 

changing, say, hQ to w o hQ, we may assume that  the equality (,31 o hi = [52 o hQl 

holds. One thus obtains a map  h : B T  n -* BTL so that  / ~ i o h  ~ ] and 

BiQ o hQ ~ fQ. The obstruction to Bi  o h ... f lies in H°dd(BT ", v . ( B L ) )  = 0 

and thus, combining with Proposition 2.1, one obtains: 

PROPOSITION 6.1 (Theorem A(a) for G = Tn): A n y  map  f : B T  n ---, B L  lifts 

to a map  h : B T  n --~ BTL; hence f ... B ~  for some ~ : T n ~ L. 

To prove Theorem A(b) for G a torus, one notices the following: Let ~ r  = 

( z / p r )  '* C T" .  Given ~1, ~2 : T '~ --" L with B ~ I  "~ B~2, by Theorem A(b) for 

G a p-group we have ~1 IVy" ~ ~2 IVy". 

Now ZL(~IVr)  D ZL(~IVr+I) D --" must  stabilize - -  that  is, ZL(~lVro) = 

. . . . .  Zr0 (~lV~'0)Xr0 , replacing ~2 by ZL(~lvro+l ) • Z L ~ I T  n. Suppose ~2]V~ n -1.  

~ = Zro~lZ~-01 , if necessary, one may assume that  ~11V~ = ~21V~. Now for r > 

r0, ~2]Vr = Zr~l[V~x'~ 1. However, ~7[V~ = ~llVr" o implies Xr E ZL(~IlV~,)  = 

ZL(~llV~"); hence ~2[V:  = ~l[V~" for all r >_ r0, so ~21V£ = ~ , [V£ .  Since V~ 

is dense in T n, this implies ~2 = ~1. 

7. Extending the Torus 

Proof  of  Theorem B: (a) Let Vr = (Z /pr )  '* C T n = T. Given ~ : T ~ L, denote 

by ~ r  its restriction to Vr. Then there is an r0 such that  ZL~r  = ZL~  for all 

r > r0. By Proposit ion 3.5(a) 

map(BVr, B((ZLqo)/;)8#, ~-, map(BVr, B(L/;))B#, 
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and it also follows from Proposition 3.5(b) that map,(BVr, B ( Z L ~ ) ) B ~ ,  -~ *. 

As map( BT,  X ~  ) I -* tim_ map( BVr, X ~  ) A , one has 

map(BT, B( ( Z L ~O )/; ) )B¢~ ~- , map(BT, B ( L /; ) ) s¢~ 

map,(BT, B((ZL~o)~)).# ~- * 

map(BT, B((Zn~,)';))~,~, ~-, B((ZL~)';). 

These three together yield 

map,(BT, B(L/;))B¢, ~-, Rr(L/ZL~o ) . 

As this holds for all p, one has 

map.(BT, B(L^))Bi, ~-~ (L /ZL~)  ^ . 

To compare map.(BT, BL)B~ with map.(BT, BL^)B~,  v~here B L  ^ = B ( L  ̂ )  = 

(BL)  ̂ ,  one uses the arithmetic square 

BL • BL ̂  

BLQ-----*(BL )Q 

As B L  ~O YI[__, K(Z, 2hi), we have B L  ^ ~Q l-I[=1 K( Z^, 2ni), and the bottom 

map in the above diagram is actually the map 

K(% 2,~,) --, I I  K( Q^, 2n~), 
i = l  i = l  

Hence B L  --* B L  ^ is a principal tlbration induced by a where Q^ = Z ̂  ® Q. 

m a p  

BL^ -' [I  [I  U<Z^/Z,2"') 
i = l  i= l  

and one has a fibration 

map,(BT, BLIB~ ~ map.(BT, BL^)Bq~ --* map,(BT, H K(Z^/Z '  2ni)). 
i 

The latter is equivalent to 1"I ~. I K ( Z A / Z , 2 m j ) ,  mj > 0 and Theorem B(a) 
3= 

Mlows. 
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For (b), note that  if X is a rational H-space with IroddX = 0, the homotopy 

fiber of map(BT,  X ) !  --* map(BT,  X ^ ) ]  is a product of Eilenberg-MacLane 

spaces whose homotopy groups are finite dimensional ZA/Z modules - -  hence 

rational H-spaces.  As 

^ " map(BT,  BL^)s~o  , map(BT,  B((ZL~O) ))v¢~, -~ 

par t  (b) of the Theorem follows. | 

THEOREM C: Let 0 --~ T ~ G ~ WG ~ 1 be a finite extension o f a  torus 

T = T" ,  let L be a compact connected Lie group, and let f : B G  ~ B L  satisfy 

f l B T  ,.~ B ~  for some homomorphism ~ : T --* L. Then: 

(a) There exists a homotopy commutative diagram 

BT B~o . BZL~ 

BG , BNL~ 

Brl Ba IBr' 

BWa " B W L  ~ 

where a : WG ~ WL~p is a homomorphism and ~Po : T ~ ZtAa is induced 

by ~, and f covers f up to homotopy. 

(b) I f  ZL~ is a torus, then f '  ,.. B~  ~ for some homomorphism ~ : G ~ NL~. In 

particular, ff  L is simple, any map  f : B L  ~ B L  induces an endomorphism 

~1 : NTL ---, NTL such that B~I  is compatible with f .  

Proof: (a) tp : T --* L factors through ~o : T ~ ZL~. Thus B T  ~ B G  

B L factors through B Z L ~. 

Given w E Wa, let a~, : G --* G be the inner automorphism induced by any 

representative ofa~ with a~,T C T. Then Ba~, ..~ 1 and thus B ~ o B a w  ..~ Bqa and, 

by Theorem A(b), ~ and ~a~, are conjugates, so there is an z E L with ~a,~ = 

zqoz -1. But as im~ = im~a~,  z E NL~, the class of z in NLqa/ZL~ = WL~ 

is uniquely determined. One can easily see that  the assignment w ~ [z] E WL~ 

induces a homomorphism a : Wa ~ WL~. Moreover, B Z L ~  admits  a WL~- 

action with 

B Z L ~  ×wL~, E W L ~  = B N L ~  

and the map  B~0 : B T  ~ B Z L ~  is an a -map .  Equivalently, if one considers 

B Z L ~  as a WG-space under the action induced by a,  then Bq00 is Wc-equivariant.  
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Now 

map(BG, BL)[B~] ~ mapwa (BT, BL)(B~,) 

mapwa [( BT, B Z n io )( S~o) ] TM map(BG, B/9)[Bwo] 

where/9 is the pullback 

I o 
Wa " WL 

By Theorem B(b), the fiber of map(BT, BZL~o)B~o ~ map(BT, BL)B~o has 

rational homotopy groups hence any Wa-map EWa ---* map(BT, BL)B~ lifts 

uniquely to a WG-map EWa ~ map(BT, BZL~)B~o, and thus BG --* BL lifts 

to B~  r, hence to BNL~. 

For (b): if L is simple and f : BL ---, BL has H*(f, Q) ~ O, then H*(.f, Q) is 

an isomorphism. Let f]T n = B~. By (a) one has 

BT ' BZr. 

L 
BNT * BNL~ 

L l 
BWL " BWL~p 

But H*(f,  Q) is an isomorphism, hence ~0T C L is again a maximal torus TL and 

ZL = TL and, by Proposition 2.3, fN ~ B~Ol. | 

8. Editor's Postscript 

The proposition below is easily obtained by combining the results of this paper 

with facts from Lie theory, 

PROPOSITION: Le~ f : BL ---* BH be a homotopy equivalence of compact, con- 

nected, semi-simple Lie groups. Then there is an isomorphism of groups, L ~- H. 

Proof." Let TL be a maximal torus of L. Restriction of f to BTL and an 

application of Theorem A yields a homomorphism ~ : TL ~ H such that the 

restriction of f to BTL is homotopic to B~. The subgroup im~ is compact, 

connected and abelian, hence is a torus T. Let g : B t t  ~ BL be a homotopy 

inverse to f .  A similar application of Theorem A yields a homomorphism ¢ : 

T ~ L such that g restricted to BT is homotopic to Be .  Since g o f  is homotopic 

to the identity, Theorem A(b) yields an element x E L such that 

~b o ~ o  = xix -~ 
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where ~0 : TL "-~ T is the fa~torization of ~ through T and i : TL ~ L is the 

inclusion of the maximal torus. 

the following diagram: 

Thus we can replace g by Ba=-I o g to obtain 

BTL Bpo , BT B~bo . BTL 

BL "f " B ~/ • BL 

in which the squares commute up to homotopy, g and f are an inverse pair up 

to homotopy (as B a z - t  ~ id) and ~00,¢0 are an inverse pair of homomorphisms. 

In addition, we have factored ¢0 through a maximal torus, which perforce is TL. 

Consequently, T is a maximal torus, now denoted TH. 

The construction in the proof of Theorem C gives a homomorphism c~ : WL "-4 

Wn~o. Since im~o0 is a maximal torus, we have Z n ~o = TH and W n  ~o = W n .  

Hence we have the following commutative diagram: 

WL x T£ " TL 

aX~o I 1~'o 
Wu x Tu " Tn 

Since ~00 is surjective and the action of WH on TH is effective, there is a unique 

homomorphism a in the above diagram. The same considerations applied to ¢0 

give a unique homomorphism fl : WH --4 WL such that ¢0~o0 is compatible with 

fla. Since ¢0 and ~0 form an inverse pair, so must c~ and •. Now Theorem C 

provides a homomorphism a : NL ~ NH such that B a  and; a ]ortior/, a is a 

homotopy equivalence. 

To see that  the homomorphism a is an isomorphism, we note that both NL and 

NH are compact, orientable closed manifolds and deg ~ = +1 on each component, 

so a is surjective. Hence a may be regarded as a covering projection. Since ker a 

is discrete and a is an equivalence, in fact ker a must consist of the identity 

done.  Hence a is an isomorphism. The main result in [CWW] asserts that,  

under the hypotheses of the proposition, an isomorphism of normalizers NL with 

NH implies an isomorphism of L with H. | 
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